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6.1 Number Theory
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Number Theory

• The numbers 1, 2, 3, … are called the 
counting numbers or natural numbers.

• The study of the properties of counting 
numbers is called number theory.
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Number Theory

• The numbers 1, 2, 3, … are called the 
counting numbers or natural numbers.

• The study of the properties of counting 
numbers is called number theory.

• One interesting question is “What counting 
numbers can be written as a product of 
other numbers, and which cannot?”
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If a and b are natural numbers, we say
a | b

to mean “a divides b” and it means that 
there is a number q with   b = a q

We say that 5 divides 30 because there is 
a natural number 6 such that 5·6 = 30.

5|30 means “5 divides 30”
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Related statements:
If   a | b

   - a divides  b
   - a is a divisor  of b
   - a is a factor  of b
   - b is a multiple  of a

  6

Examples:

a)     Does 7 | 21 ?

b)     Does 2 | 3 ?

c)     Does 5 | 15 ?

d)     What numbers divide 6?
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You can use a calculator to test divisibility.
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A number is factored  if it is written as a 
product of natural numbers.

Examples:

   22 = 2 x 11

   49 = 7 x 7

   100 = 4 x 25  or  10 x 10  or ...
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A number bigger than 1 that only has 1 
and itself as factors is called a prime  
number.

Smallest examples:

    2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37

There are an infinite number of primes.
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A number which is not prime is called 
composite .

Composite numbers have factors other 
than 1 and themself.
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The Sieve of Eratosthenes  is a method for generating 
a list of prime numbers.

Skip 1.
Circle 2, cross out multiples of 2.
Go to the next number, it is prime, cross out its 
muliples.
Repeat.

1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
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If 2 | n, then (n/2) | n.
If 3 | n, then (n/3) | n.
…
If k | n, then (n/k) | n.

What is the largest number to check to see if n is 
prime?

If k = (n/k), then k2  = n.
So only need to check numbers less than sqrt(n)
to see if n is prime.
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Prime Numbers

• Example:

• Solution:

Determine whether 83 is prime.

We don’t need to check to see if any composites divide 
83. Do you see why?
Also, we need not check primes greater than 10:

None of the primes 2, 3, 5, and 7 divide 83, so 83 is 
prime.
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Divisibility Tests and Factoring
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Divisibility Tests and Factoring

• Example: Test the number 11,352 for 
divisibility by 6.

• Solution:
– 11,352 is even, so it is divisible by 2.
–  1 + 1 + 3 + 5 + 2 = 12, which is divisible by 3, 

so 11,352 is divisible by 3.
– Since the number is divisible by both 2 and 3, 

it is divisible by 6.
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Example:  Is 201 a prime number?
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Divisibility Tests and Factoring

• One way to find the prime factorization of 
a number is to use a factor tree. 
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Divisibility Tests and Factoring

• Example: Factor 4,620.
• Solution: 

4,620 = 2 · 3 · 7 · 11 · 2 · 5 = 22 · 3 · 5 · 7 · 11
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Example: Factor 1050
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Great Dilemma of our Times:

Hot Dog Buns are sold in packs of 8
Hot Dogs are sold in packs of 10

What is the smallest number of hot dogs in buns that 
can be made with no leftovers?   22

Examples:

    10 is the GCD of 30 and 70

     9 is the GCD of 27 and 900

     1 is the GCD of 5 and 11
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To find the GCD of two numbers:
 - find the prime factorization of both numbers (with 
factor trees).
 - the primes (and their multiples) that they have in 
common is the GCD.
 - if they have nothing in common then the GCD is 
just 1.  
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Example: The GCD of 1050 and 768

1050 = 2 x 3 x 5 x 5 x 7

768 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 3
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Example: The GCD of 220 and 273

220 = 2 x 2 x 5 x 11

273 = 3 x 7 x 13
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Example: The GCD of 1944 and 26244

1944 = 23 x 35 

26244 = 22 x 38 
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Examples:

    210 is the LCM of 30 and 70

    2700 is the LCM of 27 and 900

    55 is the LCM of 5 and 11
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Example with 28 and 42

Multiples of 28:
      28, 56, 84, 112, 140, 168, 196, 224, 252, ...

Multiples of 42:
      42, 84, 126, 168, 210, 252, 294, …

Common Multiples:

Least Common Multiple:
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To find the LCM of two numbers:
 - find the prime factorization of both numbers (with 
factor trees).
 - the product of the bigger multiple of each prime 
is the LCM.
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Example: The LCM of 220 and 1672

220 = 2 x 2 x 5 x 11

1672 = 2 x 2 x 2 x 11 x 19
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Example: The LCM of 220 and 273

220 = 2 x 2 x 5 x 11

273 = 3 x 7 x 13

  32

Great Dilemma of our Times:

Hot Dog Buns are sold in packs of 8
Hot Dogs are sold in packs of 10

What is the smallest number of hot dogs in buns that 
can be made with no leftovers?
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Greatest Common Divisors and Least 
Common Multiples
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Alternative method using powers

Example: The GCD of 600 and 540

Write 600 = 23 · 31 · 52 and 540 = 22 · 33 · 51. 

In forming the GCD, we multiply the 22, the 31, 
and 51, which were the smallest powers of the 
primes that divide both numbers. 

So the GCD is 22 · 31 · 51.
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Alternative method using powers

Example: The LCM of 600 and 540

Write 600 = 23 · 31 · 52 and 540 = 22 · 33 · 51.

Then in forming the LCM, we multiply the 23, the 33, 
and 52, which were the highest powers of the 
primes that divide either number. So, the LCM is
23 · 33 · 52.
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Greatest Common Divisors and Least 
Common Multiples

If we look at what happened in the last two 
examples carefully, we see the following pattern:

Multiplying the       ‘s gives the LCM.

Multiplying the        ‘s gives the GCD.
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Applying the GCD and LCM

• Example:
Assume that bullet trains have just departed from Tokyo to 
Osaka, Niigata, and Akita. If a train to Osaka departs every 
90 minutes, a train to Niigata departs every 120 minutes, 
and a train to Akita departs every 80 minutes, when will all 
three trains again depart at the same time?

(solution on next slide)
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Applying the GCD and LCM

• Solution:

24 × 32 × 5 = 720 minutes = 12 hours


